De MicMac
Révision de 23 novembre 2016 à 11:11 par BorisLeroux (discussion | contributions) (Description)

Aller à : navigation, rechercher

Picto-liste.png List of commands


Often the Gps information is not in separate files but directly embeded in the exif metadat. The tools XifGps2Xml and XifGps2Txt allow to do extract this information and convert it to texte or xml file.

For example, with mm3d XifGps2Xml .*jpg Test : — for each image, containing gps data in exif, a file is created containing the gps information in xml micmac format; — for example for Image100.jpg, Ori-Test/Orientation-Image100.jpg.xml is created; in xml micmac for- mat; — the coordinate system is a local tangent sytem, with origin at centre of images; — the file RTLFromExif.xml contains the definition of this system in MicMac format;


The global syntax for OriExport is :

mm3d XifGps2Xml FullName Orientation NamedArgs


You can access to the help by typing :

mm3d XifGps2Xml -help

Mandatory unnamed args :

  • string :: {Full Name}
  • string :: {Orientation}

Named args :

  • [Name=DoRTL] bool :: {Do Local Tangent RTL (def=true)}
  • [Name=RTL] string :: {Name RTL}
  • [Name=SysCo] string :: {System of coordinates, by default RTL created (RTLFromExif.xml)}
  • [Name=DefZ] REAL


An example with Cuxha data set :

mm3d OriExport Ori-All-Rel/Orientation-Abbey-IMG_034.*.jpg.xml res.txt



OriExport will generate the file res.txt containinig :

Abbey-IMG_0340.jpg -4.304443 11.785803 136.229854 -5.491274 2.702560 -0.004106
Abbey-IMG_0341.jpg -3.775959 11.249636 137.040260 -6.109496 2.042527 0.097497
Abbey-IMG_0342.jpg -3.849398 11.231276 137.533559 -6.707432 1.351133 0.224315
Abbey-IMG_0343.jpg -3.921196 11.302498 137.899618 -7.334180 0.668316 0.362218

Which correspond to :

ImageName X Y Z omega phi kappa

NB : The image coordinates are exported in the system you have choosen (often a local euclidian frame).

Rotation matrix

Matrix R gives rotation terms to compute parameters in matrix encoding with respect to omega-phi-kappa angles given by the tool OriExport.

\begin{equation} R= \begin{pmatrix} \cos(\phi)\cos(\kappa) & \cos(\phi)\sin(\kappa) & -\sin(\phi)\\ \cos(\omega)\sin(\kappa) + \sin(\omega)\sin(\phi)\cos(\kappa) & -\cos(\omega)\cos(\kappa) + \sin(\omega)\sin(\phi)\sin(\kappa) & \sin(\omega)\cos(\phi)\\ \sin(\omega)\sin(\kappa)-\cos(\omega)\sin(\phi)\cos(\kappa) & -\sin(\omega)\cos(\kappa)-\cos(\omega)\sin(\phi)\sin(\kappa) & -\cos(\omega)\cos(\phi) \end{pmatrix} \end{equation}

For example OriExport will give in degree:\\ \begin{equation} \omega = 5.819826\\ \phi = 7.058795\\ \kappa = 12.262634 \end{equation}

The corresponding matrix encoding using R is:

<L1>0.969777798578237427 -0.210783330505758815 0.122887790140630643</L1>
<L2>-0.199121821850641506 -0.974794184828703614 -0.100631989382226852</L2>
<L3>0.141001849092942777 0.0731210284736428379 -0.987305319416100224</L3>