OriExport
Description
The tool OriExport can convert MicMac external orientation to the de facto standard codification using omega-phi-kappa. For now it's quite basic and all the options are not implemented. However, it should solve the majority of problem relative to exporting results in classical photogrammetric softwares.
Syntax
The global syntax for OriExport is :
mm3d OriExport FullName Results NamedArgs
Help
You can access to the help by typing :
mm3d OriExport -help
Mandatory unnamed args :
- string :: {Full Directory (Dir+Pattern)}
- string :: {Results}
Named args :
- [Name=AddF] bool :: {Add format as first line of header, def= false}
- [Name=ModeExp] string :: {Mode export, def=WPK (Omega Phi Kapa)}
Example
An example with Cuxha data set :
mm3d OriExport Ori-All-Rel/Orientation-Abbey-IMG_034.*.jpg.xml res.txt
Formalism
Output
OriExport will generate the file res.txt containinig :
Abbey-IMG_0340.jpg -4.304443 11.785803 136.229854 -5.491274 2.702560 -0.004106 Abbey-IMG_0341.jpg -3.775959 11.249636 137.040260 -6.109496 2.042527 0.097497 Abbey-IMG_0342.jpg -3.849398 11.231276 137.533559 -6.707432 1.351133 0.224315 Abbey-IMG_0343.jpg -3.921196 11.302498 137.899618 -7.334180 0.668316 0.362218
Which correspond to :
ImageName X Y Z omega phi kappa
NB : The image coordinates are exported in the system you have chosen (often a local euclidean frame).
Rotation matrix
Matrix R gives rotation terms to compute parameters in matrix encoding with respect to omega-phi-kappa angles given by the tool OriExport.
\begin{equation} R= \begin{pmatrix} \cos(\phi)\cos(\kappa) & \cos(\phi)\sin(\kappa) & -\sin(\phi)\\ \cos(\omega)\sin(\kappa) + \sin(\omega)\sin(\phi)\cos(\kappa) & -\cos(\omega)\cos(\kappa) + \sin(\omega)\sin(\phi)\sin(\kappa) & \sin(\omega)\cos(\phi)\\ \sin(\omega)\sin(\kappa)-\cos(\omega)\sin(\phi)\cos(\kappa) & -\sin(\omega)\cos(\kappa)-\cos(\omega)\sin(\phi)\sin(\kappa) & -\cos(\omega)\cos(\phi) \end{pmatrix} \end{equation}
For example OriExport will give in degree:\\ \begin{equation} \omega = 5.819826\\ \phi = 7.058795\\ \kappa = 12.262634 \end{equation}
The corresponding matrix encoding using R is:
<ParamRotation> <CodageMatr> <L1>0.969777798578237427 -0.210783330505758815 0.122887790140630643</L1> <L2>-0.199121821850641506 -0.974794184828703614 -0.100631989382226852</L2> <L3>0.141001849092942777 0.0731210284736428379 -0.987305319416100224</L3> </CodageMatr> </ParamRotation>