Gravillons tutorial : Différence entre versions
| Ligne 31 : | Ligne 31 : | ||
===3 Visualize Relative Orientation=== | ===3 Visualize Relative Orientation=== | ||
| − | |||
[[Image:01_Gravillonn_RO.jpg|thumb|250px||alt=Relative Orientation|Screenshot 1]] | [[Image:01_Gravillonn_RO.jpg|thumb|250px||alt=Relative Orientation|Screenshot 1]] | ||
| + | MicMac include a tools which create a sparse point clouds (TPs) for visualization. This tool is [[AperiCloud]] : | ||
<pre>mm3d AperiCloud ".*.JPG" Arbitrary</pre> | <pre>mm3d AperiCloud ".*.JPG" Arbitrary</pre> | ||
| − | After this step, a ".ply" file will appear in your working directory, open it with Meshlab (see [[Install|Useful softwares for MicMac]]) | + | After this step, a ".ply" file will appear in your working directory, open it with Meshlab (Screenshot 1 : see [[Install|Useful softwares for MicMac]]) |
===4 Absolute Orientation=== | ===4 Absolute Orientation=== | ||
| + | [[Image:01_Gravillonn_AO.jpg|thumb|250px||alt=Absolute Orientation|Screenshot 2]] | ||
For this datasets, Ground Control Points, are already measured in images (file "Mesure-Appuis.xml"). With 3 points (X,Y,Z) we can determine the 3D transformation between the arbitrary system (Relative Orientation) and the georeferenced system, this operation is call "Bascule" and can be performed by the command [[GCPBascule]] : | For this datasets, Ground Control Points, are already measured in images (file "Mesure-Appuis.xml"). With 3 points (X,Y,Z) we can determine the 3D transformation between the arbitrary system (Relative Orientation) and the georeferenced system, this operation is call "Bascule" and can be performed by the command [[GCPBascule]] : | ||
<pre>mm3d GCPBascule ".*.JPG" Arbitrary Ground_Init Dico-Appuis.xml Mesure-Appuis.xml</pre> | <pre>mm3d GCPBascule ".*.JPG" Arbitrary Ground_Init Dico-Appuis.xml Mesure-Appuis.xml</pre> | ||
| Ligne 44 : | Ligne 45 : | ||
The new orientation is stocked in the directory "Ori-Ground". We can visualize it with [[AperiCloud]] : | The new orientation is stocked in the directory "Ori-Ground". We can visualize it with [[AperiCloud]] : | ||
<pre>mm3d AperiCloud ".*JPG" Ground</pre> | <pre>mm3d AperiCloud ".*JPG" Ground</pre> | ||
| − | You can visualize the points cloud created in Meshlab | + | You can visualize the points cloud created in Meshlab (Screenshot 2). |
| − | + | ||
===5 Create a Dense Points Cloud=== | ===5 Create a Dense Points Cloud=== | ||
| + | [[Image:01_Gravillonn_3DC.jpg|thumb|250px||alt=3D Points Cloud|Screenshot 3]] | ||
With any orientation directory, you can generate a dense point cloud. The method which consist to use the content of all images to create a 3D model is call dense correlation or densification. In MicMac, it's performed by the command [[Malt]] : | With any orientation directory, you can generate a dense point cloud. The method which consist to use the content of all images to create a 3D model is call dense correlation or densification. In MicMac, it's performed by the command [[Malt]] : | ||
<pre>mm3d Malt GeomImage ".*.JPG" Ground Master="1.JPG" ZoomF=2</pre> | <pre>mm3d Malt GeomImage ".*.JPG" Ground Master="1.JPG" ZoomF=2</pre> | ||
This last tool doesn't create directly a 3D model, to generate it, you have to run an other tools Nuage2Ply : | This last tool doesn't create directly a 3D model, to generate it, you have to run an other tools Nuage2Ply : | ||
<pre>mm3d Nuage2Ply" "MM-Malt-Img-1/NuageImProf_STD-MALT_Etape_7.xml" Attr="1.JPG" Out=1.ply RatioAttrCarte=2</pre> | <pre>mm3d Nuage2Ply" "MM-Malt-Img-1/NuageImProf_STD-MALT_Etape_7.xml" Attr="1.JPG" Out=1.ply RatioAttrCarte=2</pre> | ||
| − | Then visualize the 3D model "1.ply" in Meshlab | + | Then visualize the 3D model "1.ply" in Meshlab (Screenshot 3). |
| − | + | ||
===Conclusion=== | ===Conclusion=== | ||
With this tutorial, you have realised a complete photogrammetric process with MicMac. This the first tutorial was willingly easy, to start rapidly with MicMac. If you want to go further, you can try the next tutorials. | With this tutorial, you have realised a complete photogrammetric process with MicMac. This the first tutorial was willingly easy, to start rapidly with MicMac. If you want to go further, you can try the next tutorials. | ||
Version du 4 février 2016 à 14:37
Sommaire
Download
- You can find this dataset at :
http://logiciels.ign.fr/?Telechargement,20
Datasets are available at the bottom of the page, in part test datasets. Then, UnZip the ".zip" archive.
- There is also a direct link to download it in zip format here :
http://micmac.ensg.eu/data/gravillons_dataset.zip
Presentation
This dataset was created by L.Girod at the University of Oslo, Norway. This dataset was acquired to model a volcano model created by O.Galland. File present in the directory are :
- 4 images : 1.JPG, 2.JPG, 3.JPG, 4.JPG.
- GCPs coordinates : Dico-Appuis.xml.
- Mesure of GCPs in images : Mesure-Appuis.xml.
- 1 Mask : 1_Masq.tif/1_Masq.xml
- 2 commands scripts : gravillons.sh (Linux) et gravillons.bat (Windows)
During this tutorial, we will approach general concepts, for more details, go further in tutorials or directly in commands pages.
Tutorial
1 Tie-Points search
The first step of each MicMac pipline is to look for tie points (points that are seen in more than one image), this step is call image matching and performed by the command Tapioca :
mm3d Tapioca All ".*.JPG" 1500
The All option is used here because we know that all the images are going to have tie points with each other (they all depict the same area).
2 Internal Orientation+Relative Orientation
Photogrammetry is composed of three steps :
- Internal Orientation : which consist to determine camera's paremeter (focal length, PPA, PPS, distorsion center, or distorsion parameters).
- Relative Orientation : which consist to determine position of each camera's from each other in an arbitrary system.
- Absolute Orientation : which consist to bascule the relative orientation to a scaled and oriented system (typically WGS84)
In digital photogrammetry, the two first steps are generally processed at the same time. In MicMac, the tools which perform internal and relative orientation is call Tapas :
mm3d Tapas FraserBasic ".*.JPG" Out=Arbitrary
This tools use a compensation by least squares to determine camera's parameter and relative orientation. The option "FraserBasic", correspond to a model of distorsion for our camera. The "option" Out specify the name of the orientation directory (here it will be Ori-Arbitrary).
3 Visualize Relative Orientation
MicMac include a tools which create a sparse point clouds (TPs) for visualization. This tool is AperiCloud :
mm3d AperiCloud ".*.JPG" Arbitrary
After this step, a ".ply" file will appear in your working directory, open it with Meshlab (Screenshot 1 : see Useful softwares for MicMac)
4 Absolute Orientation
For this datasets, Ground Control Points, are already measured in images (file "Mesure-Appuis.xml"). With 3 points (X,Y,Z) we can determine the 3D transformation between the arbitrary system (Relative Orientation) and the georeferenced system, this operation is call "Bascule" and can be performed by the command GCPBascule :
mm3d GCPBascule ".*.JPG" Arbitrary Ground_Init Dico-Appuis.xml Mesure-Appuis.xml
This tool process a first Bascule only with the GCPs (Directory Ori-Ground_Init), we will now calculate a second Bascule with GCPs and TPs. To do that, we use the command Campari :
mm3d Campari" ".*.JPG" Ground_Init Ground
The new orientation is stocked in the directory "Ori-Ground". We can visualize it with AperiCloud :
mm3d AperiCloud ".*JPG" Ground
You can visualize the points cloud created in Meshlab (Screenshot 2).
5 Create a Dense Points Cloud
With any orientation directory, you can generate a dense point cloud. The method which consist to use the content of all images to create a 3D model is call dense correlation or densification. In MicMac, it's performed by the command Malt :
mm3d Malt GeomImage ".*.JPG" Ground Master="1.JPG" ZoomF=2
This last tool doesn't create directly a 3D model, to generate it, you have to run an other tools Nuage2Ply :
mm3d Nuage2Ply" "MM-Malt-Img-1/NuageImProf_STD-MALT_Etape_7.xml" Attr="1.JPG" Out=1.ply RatioAttrCarte=2
Then visualize the 3D model "1.ply" in Meshlab (Screenshot 3).
Conclusion
With this tutorial, you have realised a complete photogrammetric process with MicMac. This the first tutorial was willingly easy, to start rapidly with MicMac. If you want to go further, you can try the next tutorials.